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Summary

This Quarterly Report addresses the following topics related to the dynam-

ics of the 4-mass tethered system:

The development of damping algorithms for damping the out-of-plane libra-
tion of the system and the interaction of the out-of-plane control with the

other degrees of freedon.

The development of environmental models to be added to the dynamics simula-
tion computer code. The environmental models are specifically a new drag rou-
tine based on the Jacchia's 1977 model, a J; model and an accurate thermal model

of the wire.
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Figure Captions

Figure 1. In-plane and out-of-plane libration angles vs. time for a case

in which the out-of-plane damping system is disactivated. The
gains of the control laws are: Kp=2, K,=0.

Figure 2a-b. Dynamic response vs. time for a case in which a modified
(p = constant) yo-yo control law is adopted for out-of-
plane libration control while the in-plane control system
is disactivated. The gains of the control laws are:
Ke=0, K,=4.

Figure 3a-b. The same as in Figure 2 except that this time the in-plane
' control system is activated. The gains of the control laws
are: Kp=1, K,y=4.

Figure 4a-i. The same as in Figure 2 (the in-plane control system is
disactivated). The gains of the control laws are:
Ko=0, Ke=10.

Figure 5a-b. The same as in Figure 3. The gains of the control laws
are: Kg=0.1l, K=10.

Figure ba-r. Dynamic response vs. time for a case in which the
standard yo-yo control law (variable ) is adopted
for out-of-plane libration control. The in-plane control

system is also activated. The gains of the control laws
are: Kg=0.2, KP=;0.

Figure 7a-b. Front-view and side-view respectively of the system under
the conditions of Figure 6. The snapshots are every 100
sec for 36,000 sec. The x-axis scale is largely expanded.

Figure 8. Atmospheric density vs. altitude for different exospheric
temperatures. The curves are obtalned by means of an
analytical fit of the Jacchla's 1977 model.

Figure 9a-d. Atmospheric density vs. time and exospheric temperature
vs. time over one orbit at 450 km altitude and 28°5
inclination. Figure 9a-b show the results for the sun at
the Spring Equinox and Figure c-d for the sun at the Summer
Solstice.

Figure 10. Acceleration components in the inertial reference frame
due to the J; gravity term vs. time over one orbit
at 450 km altitude and 2895 inclination.

Figure 11. Acceleration components in the orbiting reference frame
due to the J; gravity term vs. time for the same
conditions of Figure 10.




Figure 12.

Figure 13.

Figure 14.

Schematic of the geometry of solar illumination for a
tethered system.

Temperature vs. time over one equatorial orbit at 450 km
altitude with illumination angle f=0 for a stainless
steel tether of 2 mm diameter.

Same as in Figure 13 for a kevlar tether of 2 mm dlameter.
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1.0 INTRODUCTION

This is the sixth Quarterly Report submitted by SAO under contract NASS8-
36606, "Analytical Investigation of the Dynamics of Tethered Constellations in
Earth Orbit (Phase II)," Dr. Enrico C. Lorenzini, PI. This report covers the

period from 22 June 1986 through 21 September 1986.

2.0 TECHNICAL ACTIVITY DURING REPORTING PERIOD AND PROGRAM STATUS

2.1 Algorithms For Damping Out-0f-Plane Librations

Damping of out-of-plane librations is achieved by controlling the lengths
of the three tethgr segments connecting the four platforms. The out-of-plane
librational dynamics of a multi-mass system can be modeled, with good approxima-
tioﬁ, by reducing the system to a‘two—mass system if the bowing of the former is
small. The simplified equation of motion that describes the unperturbed, small

out-of-plane librations of a two-mass tethered system is as follows:
2% + 2tép + 4L%p = 0O (2.1.1)

For a two-mass tethered system the energy dissipated per cycle per unit mass is

therefore given by (£ =~ £, for §¢ < {,):

T Te
Ep,p = -z/ tip? at ~ —2t°/ fprat (2.1.17)
[-] L]

where 7, is the period of the out-of-plane libration equal to x/Q1. From simple

physical considerations and also from equation (2.1.17) it is immediately evi-
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dent that the energy dissipated during an out-of-plane damping cycle does not
depend upon the orbital rate . The out-of-plane libration is in fact very
weakly coupled with the longitudinal degrees of freedom, consequently tension
control laws, which rely on such coupling, are poorly effective in damping out-
of-plane librations. A simple mechanical equivalent of the out-of-plane dynam-
ics of a tethered system is a pendulum of variable length on the ground (the
pendulum has negligible Coriolis forces due to the Earth rotational rate and the
librational frequency is approximately constant if the length variations are
small). The yo-yo technique developed in reference [1] and [2] are perfectiy
suitable for damping the ocut-of-plane librations of a tethered orbital system.
The same technique is on the contrary surpassed by the S-type [3] control law
for damping the in-plane llibration because the latter control law exploits the
Coriolis forces generated by the orbital rate 1. In order to clarify this point

we can use equation (2.1.1') for computing the energy dissipated by substituting

into that equation various control laws. In the case of small damping we can
assume that the libration over one cycle is approximately sinusoidal. We have
therefore

p ~ psin (20t) (2.1.2)

¢ ~ 2Qpcos (2Qt) (2.1.3)

An ideal yo-yo control law (bang-bang type) can be expressed in formulae as

follows:

L/e,

I

(1+K,5) if sign(p) = sign ($)

(2.1.4)

£/¢, (1 -Kep) if sign(p) # sign (§)
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where $ 1s the amplitude of the out-of-plane libration. We can rewrite equa-

tion (2.1.1f) as follows:

Te e,
ED,¢ - -—/ Mp dp = —/ Lp dp (2.1.5)
° o

where M, 1is the out-of-plane component of the damping torque per unit mass and
L, is the out-of-plane component of the angular momentum. By making use of

equation (2.1.4) we finally have:
23 lz %] _ 2:=3 2
Ep,qp jad —-2( nax — Lmin )P-nx = — 320 /4 Kpto (2.1.6)
The fractional damping of the ¢ degree of freedom can be obtained by equating

the kinetic energy varlation for that degree of freedom to the energy dissipated

per cycle (per unit mass) given by equation (2.1.6). We have:

AT, = Ep,, (2.1.7)
or
2030° [(P-AB) - PY] ~ 32005 K, L2 (2.1.8)
After defining:
68 = Laay — Luin = 2K,0L, (2.1.9)
we obtain:
% ~ 4 %—f— (ideal yo-yo, out—of —plane) (2.1.10)
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An ideal yo-yo control law, as expressed by equation (2.1.4) is unfeasible be-
cause it requires an infinite tether velocity. In actuality the ideal yo-yo
control law is approximated by a sinusoidal control law (we call it smooth yo-

yo) that can be defined as:

t/t, = [1 + K,Psin(40t)] (2.1.11)

By substituting equation (2.1.11), its derivative and equation (2.1.3) into

equation (2.1.17) we obtain:

Ep,p & —8TO3LIB%, (2.1.12)

After making use of equation {2.1.7) and of equation (2.1.9) we finally obtain:

sIIg
o
(29

~ o N (smooth yo-yo, out—of —plane) (2.1.13)
° .

By using the smooth yo-yo instead of the ideal yo-yo we have therefore a de-

crease in damping effectiveness of roughly 20%.

A modification of the smooth yo-yo control law can be obtained by assuming
that @ in equation (2.1.11) is constant and equal to the amplitude of the first

out-of-plane libration cycle @;. Consequently equation (2.1.13) is modified to

N
[

A . 5 B2 0L (2.1.131)
] P £
The fractional damping is therefore increasing with the decrease of p. This
result seems theoretically remarkable. In practice, however, the control of

out-of-plane 1librations excites in-plane 1librations because the latter are
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strongly coupled with tether length variations. This spill-over effect pumps
the in-plane libration amplitude. By adopting the modified smooth yo-yo control
law the spill-~over does not decrease with $; the in-plane libration builds up.
The in-plane control consequently triles to damp out the in-plane libration and
by doing so impairs the effectiveness of the out-of-plane libration damping. In

actuality therefore the result shown by equation (2.1.137) is not achievable.

We want now to compare the in-plane libration damping with the out-of-plane
libration damping. The simplified equation of motion that describes the unper-

turbed, small in-plane librations of a two-mass tethered system is as follows:
2§ + 226(6-Q) + 323020 = 0O (2.1.14)

The energy dissipated over a cycle per unit mass is therefore given by (£ =~ (,

for 6L << £,):
e, o . .
Epp = _z/u(o—n)édt ~ - 28, /t(o—n)adt (2.1.15)

where 79 1s the in-plane libration period equal to 27x/(+/3 ). The equation,
similar to equation (2.1.7), applicable to in-plane librations can be obtained
by multiplying equation (2.1.14) by ¢ and intergrating from o to 7. Since

df2/dt = 26§ and £ ~ £, we obtain:

i
()

fa 1'0 fo
z?,/déz + zzofé(é—n)édt + 3032 046 (2.1.16)

°

Equation (2.1.16) can therefore be written as follows:

ATa rel — ED,O (2.1.17)
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where Aﬂfd stands for the kinetic energy of the § degree of freedom relative to

the LH-LV reference frame.

The smooth yo-yo control law for damping the in-plane libration is ex-

pressed as follows:

L/, = [1+K,?sin(z\/3_nt)] (2.1.18)

By following the same procedure adopted for computing the out-of-plane frac-

tional damping but using equation (2.1.17) instead of (2.1.7) we arrive at the

following result:

~ x R (smooth yo—yo, in-—plane) (2.1.19)
-]

This result stems from the fact that by using a yo-yo type control law we do not
explolit the Coriolis forces generated by the orbital rate 1. The fractional
damping turns therefore to be the same for in-plane librations and out-of-plane
librations; it would be éompletely different had we used a tension control law.
The conclusion just reached prompted us to design the S-type control law for
damping the in-plane libration. The S-type control law 1is formulated as fol-

lows:

£/, = (1-—Keb) (2.1.20)

The associated fractional damping, in the case of light damping, is given by:

12

=g,
ﬁga
©
|
&
nj
[(]
}.u
o}
|
g
}—I
[0
3
o
AT g
—~
[ §)
’_l
[ 8]
'-l
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The most important feature is that the S-type control law provides a fractional
damping that is independent of the amplitude 0. Heavy damping can be easily
achieved with this type of control law even at small amplitude 9. In the case
of heavy damping, however, equation (2.1.21) provides only a first order approx-
imation of the fractional damping because the in-plane libration is no longer a

pure sinusoid over a cycle; equation (2.1.21) gives an overestimation of the

fractional damping in that case.

We have also computed the fractional damping for out-of-plane librations
achieved by using other non linear control laws. Table 1 summarizes the frac-
tional damping achievable vs. the various control laws shown in column one for

the out-of-plane dynamics. Table 2 shows similar results for the in-plane dy-

namics.

Table 1

Out-of-Plane Libration Damping by Means of Tether-Length Control Law

Control Law Mathematical Formulation Eractional Damping
Ideal Yo-Yo £/L,=(1+K,P) if sign (@) = ($) %@ ~ 4 -625

t/l=(1-Kep) if sign (p) # sign(p)

Smooth Yo-Yo  £/f, = [1+K,Psin (40t)] %‘3 o o i—t

o
Modified L/8, = [1+K,P1sin (40t)] é_‘-e ~ g 82 i_l
Smooth w LR
Yo-Yo
@% Control £/8, = [1+K,p 9] ﬁ_‘g ~ o i—t
Law e °
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In-Plane Libration Damping by Means of Tether-Length Control Laws

Control Law Mathematical Formulation Eractional Damping
Ideal Yo-Yo £/8,=(1+Kef) if sign(8)=(6) Aa?o ~ 4 i—‘
L]
t/t.=(1-Kef) Lf sign(8)# ()
Smooth Yo-Yo €/L, = [1+Kefsin(2+/3 Qt)] %; ~ x %£
af x &6t
S- e L/L, = (1-Kqf = N = —
Typ / (1-Kof) 9 /3 .0
References to Section 2.1
1. Baker W.P. et al. "Tethered Subsatellite Study," NASA
™ X-73314, March, 1976.
2. Spenser T.M. "Atmospheric Perturbation and Control of

a Shuttle/Tethered Satellite,"” Proceedings of the 8%th IFAC
Symposium, Automatic Control in Space, 1980.
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2.2 Simulation Runs With/Without Out-Of-Plane Libration Damping Algorithms

The previous section dealt with the yo-yo damping technique for a two-mass
tethered system. 1In this section we generalize it to a four-mass tethered sys-
tem. As already shown for the in-plane control system in Quarterly Report No. 5
Section 2.4 the generalization is readily implemented by controlling the three

tether segments proportionally to their unstretched lengths. In formulae

£ic = Loy (1-Ke8 +Ker1€11/Lox + Loror)
L2 = Loz (1 —Kpb +Keraera/Los—Kera€r1/ Loz + Loror) (2.1.22)
£ic = L¢3 (1—K09-Keszleoz/loaz'*'tnLoL)

Equations (2.1.22) are similar to equations (2.4.3) of Quarterly Report No. §
except for the term {pL that is the tether length variation per unit length for
the out-of-plane libration control. The variable {p o depends on the particular

control law adopted.

Several simulation runs have been done in order to derive a reasonable
technique for damping the out-of-plane oscillations. The smooth yo-yo control
law has been extensively tested either in the standard (variable ) or in the
modified version (constant ). The in-plane libration angle # and the out-of-
plane libration angle ¢ are shown in Figure 1 for a case in which the in-plane
libration control is activated (Ke=2) while the out-of-plane libration control
is off (K,=0). Notice that the in-plane libration is very well damped and that
the in-plane control does not spill over the out-of-plane libration. The vice-
versa is not true. The second simulation was run by adopting Ke=0 (in-plane
control off) and Ky=4 in the modified smooth yo-yo control law. Figure 2a

shows the out-of-plane angle vs. time. The fractional damping (for light damp-
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ing: fractional damping =~ logarithmic decrement = A; damping ratio o~ é%) of
the angle ¢ is approximately 11%. Figure 2b shows the in-plane angle and the
out-of-plane angle vs. time for the same case. This figure clearly shows the
spill of the out-of-plane control over the in-plane libration. The amplitude of
the in-plane angle is building up. A third simulation was run in order to
address the issue of the back action of the in-plane control over the out-of-
plane d;mping. The control law adopted for the out-of-plane libration is the
same of the previous run with the same gain ky = 4. The in-plane control is
activated with a gailn k¢ = 1 in the S-type control law. Figure 3a shows the
out-of-plane angle vs. time for a time duration of 5000 sec. Because of the
activation of the in-plane control the out-of-plane damping is reduced from 11Y%
to 6.5Y%. The in-plane amplitude growth due to the spill-over is, on the con-
trary, reduced from 2° to 1° as shown in Figure 3b. In the fourth simulation
run K¢=0 and Ky=10. This simulation has been run for 10,000 sec to show better
the build-up of in-plane librations. Figure 4a depicts the out-of-plane libra-
tioﬁ angle vs. time. A fractioﬁal damping ~ 26% has been achieved. The out-
of-plane 1libration phase-plane, depicted in Figure 4b, stresses this result.
Figure 4c shows the in-plane libration angle build-up (together with the out-of-
plane angle vs. time) while Figure 4d depicts the phase-plane of the in-plane
libration. The fractional tether length variation 6£/f, for out-of-plane libra-
tion control is shown in Figure 4e (in the case of the modified smooth yo-yo,
§¢/t, has a constant amplitude). By substituting the values of §&/¢, = 0.12
(remember that §f is a peak-to-peak variation) into equation (2.1.13') for the
first cycle (when ¢@,/p = 1) we obtain a fractional damping Af/8 = 38% that is
greater than the measured one (26%). The difference can be attributed to two
different effects: 1) Equation (2.1.137) and all the other similar equations
are valid for light damping and they overestimate the damping if otherwise. 2)

The tether elasticity deforms the eight-shaped damping cycle invoked by equation
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(2.1.11). This latter effect is readily noticeable in Figure 4f that shows the
trajectory of mass no. 1 with respect to the orbiting reference frame (located
approximately at the system C.M.). For completeness Figure 4g and 4h show the
in-plane and out-of-plane components respectively of the distances of the mid-
dle-masses from the straight line through the end-masses (lateral deflections).
Figure 4i depicts the moduli of such distances. In the fifth simulation the
same gain k, = 10 of the previous simulation was adopted for the out-of-plane
libration control while Ky was set equal to 0.1 in an attempt of limiting the
in-plane oscillation growth without impairing the damping of out-of-plane libra-
tions. Figure 5a shows the out-of-plane libration angle vs. time. The frac-
tional damping reduction is almost negligible: from 267 to 257. Figure 5b
shows the in-plane libration angle vs. time and the out-of-plane angle vs. time.
The in-plane amplitude growth is reduced compared to the previous run. All the
other features of this run are similar to the previous one. Because of the
results obtained by adopting the modified yo-yo control law we decided to switch
to‘the standard yo-yo (variable.a) for the following simulations in order to

reduce the spill-over due to the out-of-plane libration control.

The sixth simulation run adopts K,=10 in the standard yo-yo control law
while Kp is set equal to 0.2. This simulation has been run for 36,000 sec.
Figure 6a shows the angle ¢ vs. time. The fractional damping is, at the begin-
ning, around 17%. The fractional damping starts decreasing past 15000 sec. The
variation is, however, non-monotonic: the fractional damping goes almost to
zero around 30000 sec and goes up again to 6% at 32000 sec. Various sources can
contribute to the deviation of the fractional damping behavior from equation
(2.1.13): 1) the tether length varlation for yo-yo control, as expressed in
equation (2.1.11), has no frequency feedback; the controller goes siowly out of

phase with the ¢ oscillation because of the frequency variation due to damping.
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This phenomenon, however, is not very important in the present simulation as it
clearly appears from Figure‘6b that shows the tether length variation for out-
of-plane libration damping (fpLor) vs. the out-of-plane angle. The phase differ-
ence is fairly constant as 1t can be Inferred by the crossing points of the
eight-shaped curves close to the =0 vertical line. 2) The system is probably
settling down to a state in which energy, through exchange among the various
degrees of freedom, is flowing into the least damped degrees of freedom. This
conclusion can be preliminarily inferred from Figure 6c that shows the angular
foot-print of the system (out-of-plane libration vs. in-plane libration). At
approximately the same time when the damping starts decreasing the system gets

trapped in an eight-shaped angular foot-print.

Figure 6d shows the in-plane angle vs. time along with the out-of-plane
angle vs. time. The in-plane angle is clearly forced by the tether length
variation for thercontrol of out-of-plane librations. By adopting the standard
smooth yo-yo control law, however, the spill-over decreases with time. Figures
6e and 6f are the phase-planes for the ¢ and # oscillations respectively. Fig-
ures 6g and 6h show the tether length variation per unit tether length for the
out-of-plane and in-plane oscillation control respectively. Figure 6i and 6j
show the in-plane and out-of-plane components respectively of the lateral
deflections of the Space Station (sollid line) and the G;laboratory (dotted
line). The in-plane component of the lateral deflection of the G-laboratory is
excited at the beginning of the simulation by the out-of-plane control spill-
over but it decreases as the spill-over decreases. The out-of-plane components
of lateral deflections of both the Space Station and the G-laboratory increase
slowly with time. Since there is no control over such components in all these
simulation runs the energy is probably accumulating in these degrees of freedom.

Figures 6k, 6£ and 6m depict the tether length variations for tether no. 1, no.
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2 and no. 3 respectively. In order to give an idea of the acceleration fluctua-
tions during the out-of-plane damping process Figure 6£ depicts the three compo-
nents, in the orbiting reference frame, of the acceleration on board the Space
Station. The residual acceleration is due to the fact that all the initial
oscillations have not beeﬁ damped out completely. The in-plane libration how-
ever can be damped out very effectively by disactivating the out-of-plane yo-yo
control and by increasing the gain of the in-plane control system. The follow-
ing figures, therefore, should not be interpreted as the limit performance of
the system. Figures 6p, 6q and 6r show the flight direction (ACH), transverse
(ACL) and vertical (ACH) component of the acceleration on board the G-laboratory
vs. time. Because of the relatively large residual libration amplitudes the
residual acceleration fluctuations on board the G-laboratory are larger than the
acceleration fluctuations on board the Space Station. Finally Figures 7a and 7b
show the expanded-scale (the expansion coefficient is different for the two
figures) front-view and side-view respectively of the system with snapshots ev-
ery 100 sec up to 36,000 sec. The residual oscillations of the system are

clearly evident in these two figures.

2.3 Environmental Models

We have developed an entirely new package of subroutines which model the

environment at the altitudes of interest to the Space Station.

We have modeled the major perturbations acting upon a tethered system in
the range of altitudes from 400 km to 600 km. The major perturbations are:
drag, Jz gravity term and thermal as dealt with in detail in the next subsec-

tions.
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2.3.1 Drag Model -

As a density model we have adopted the version by C.E. Roberts Jr., refer-
ence [l], who developed an analytical model of upper atmosphere which provides
atmospheric density as a function of exospheric temperature and altitude. The
model is based on Jacchia's 1970, taking alsoc into account the '77 corrections
[2]. The temperature equation has been modified in order to have a simple

analytical expression of the temperature as a function of the height h.

The atmospheric density is given by:

6
p(h) =) Mydi(h) (2.3.1)
i=1
where:
i = constituents = N3, Ar, He, 0, O, H
My = molecular mass (gr/mole)
ds = number of particles of each constituent per cm?/Avogadro’'s
number
l+ag+1yy o 7Y
T Tex — T (h)
ds (h = d; (h % —_——— 2.3.
1 (h) 1 (hi1as) (T (h)) ( Tep— T, ( 2)
dj (hyzs) = computed data at h = 125 km
Tex = exospheric temperature
oy = thermal diffusion coefficients
Ty = f (exospheric temperature) = A; + A;Tex + Azexp (A4Tex)
Tex = To [/ h—hy L
T(h = Tex— (Tex—T - . 2.3.3
(h) ex — (Tex — Tx) exp[ (TEX_Tx m—he J\Rotn ( )
Ta = 188 °K
hy = 125 km
h, = 90 km
L = to be chosen in order to produce a minimum in the absclute

value of the percentage difference with the Jacchia's
model for altitudes between 125 and 1000 km and for Tgx
between 600°K and 2000°K
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Ra = effective earth's radius = 6356.766 kn
2
_ MigoRa Tex — Tx hy —h,
s = RLTex \Tex — To ) \Ra +hix (2.3.4)
o = gravity acceleration on the ground = 9.80665 E%
s
R = universal gas constant = 8.31432 J/°K-mole

The number of particles of atomic hydrogen dy is equal to zero for h < 500 km.
As a result of the above mentioned computations Figure 8 shows the atmospheric
density vs. altitude, in the range of interest to our system, for different

exospheric temperatures.

In order to obtain a more accurate density model we have improved the
"static model” by taking into account the phenomena which affect the values of
the global exospheric temperature (3]. We have modeled the effects of solar
activity and diurnal variations but we have neglected the geomagnetic activity.

Following these assumptions we can express the local exospheric temperature T

as follows:

T, = Te(l +R-1-sin'0)(l +RTC°15TR,;;5;2W cosn %) (2.3.5)
where:
Te = night minimum of the global exospheric temperature,
function of solar activity
Ry = cost = .3 = amplitude of temperature variation
m = cost = 2.2
n = cost = 3.0
G = | $+60]/2
n = | ¢-60]/2
T = |H + B + p sin (H+1)|

¢ = latitude of the satellite
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b0 = declination of the sun

H = hour angle of the sun

B = lag of the temperature maximum with respect to the sun's
culmination = cost = -37°

T = asymmetry of temperature distribution = cost = +6°

v = location of temperature distribution asymmetry = cost = +43°

Figures 9a, 9b, 9c and 9d show the density and the local exospheric temperature
variations vs. time (1 orbit) in two different seasonal situations: Spring

equinox and Summer solstice.

The deceleration of the i*f-mass my due to drag is given by:

fd,i = ",Bipilvi I\-}i (2.3.6)
where:
B = ballistic coefficient of the ith-mass = E%ﬁ?i
Ay = cross section of the ith-mass
Cp,s = drag coefficient of the i%*-mass
Pi = p(hy) = atmospheric density at height h;
hy = height of the i*f-mass = Ry-Rg (1-fsin?);)
f = flattening factor of the Earth
VL = velocity of the itP-mass relative to the atmosphere
Ay = latitude of the itP-mass
Rg = earth's equatorial radius

We assume that the atmosphere rotates rigidly with the Earth and, differently
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from other authors, we take into account the relative motion between the orbit-

ing frame and the i*®-mass my. The relative velocity is therefore given by:
Vi = Ry — Qg x B (2.3.7)
where {lg is the Earth's angular velocity while R; is the radius vector from the
Earth's center to the i*-mass. We have

Ry = £y + 0 x Ry (2.3.8)
where R, is the radius vector of the origin of the orbiting reference frame, r,

is the radius vector from that origin to the ith-mass and 1 is the orbital rate.

Hence

Vi = (-G x (Ro+F1) + ¥4 (2.3.9)

The aerodynamic forces (per unit mass) are readily computed by substituting

equation (2.3.9) into equation (2.3.6).
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2.3.2 J; Model -

For satellites other than the geosynchronous ones the zonal harmonics of
the Earth's gravity field are the major source of orbital perturbations. The
expression of the potential of the Earth's gravity field for the ith-mass of the

system, limited to the zonal harmonic terms, is given by:

Vy = "RL:L [l —'i (g-?) JIn Pno(Sinsi)} (2.3.10)

where Rg is the earth equatorial radius, p the earth gravitational constant, J,
are the zonal harmonic coefficients, P,, are Legendre polinomials of argument
sinéy, 6; is the latitude of the i'M-mass and R, is the radius vector of the same
mass. If we limit the expansion of equation (2.3.10) to the J; term (Jp = 0 in
the geocentric reference frame) we obtain the expression of the J; perturbation

potential as follows:
Ji _ B (Re)' J
vi? = & 22 (1-3 sin% 2.3.11
1 R, (Rx) > ( 1) ( )
The gravity perturbation force due to J; is therefore given by:

FJ? = —graa (W9 (2.3.12)

Since in functional form sz = sz [Ri,sin61(Ri)] we have:

I _ |avi? avi?  9(sinby)| R, 3 =1,2,3 (2.3.13)
xij— aRi a(sin51) aRi 3xij i = l, s ey U
where x;; = X3, xi2 = Y3, %33 = Z; are the components of the radius vector R; of

the i**-mass in the inertial reference frame. By substituting equation (2.3.11)
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into equation (2.3.12) we finally get:

J2 — 2 2 s .22 xi
Exi = 2 p Jy Rg (l—SSln 61) i:g
E) = - 2 4 5, R (1-5sint6y) 2L (2.3.14)
Yj_ Ris
Ja _ 3 2 . Zy
Ezi = - 3 » Jz R@ (3—551?1261) R—is

Figure 10 shows the components in inertial reference frame of the J; gravity
force over one orbit with an inclination of 2895 and an orbital altitude of 450
km. The components of the J; gravity force in inertial reference frame, given
by equations (2.3.14), must be transformed into orbiting reference frame compo-
nents in order to be introduced into our dynamics simulation computer code.

This transformation is performed according to:

{Ffz}o = [T] {Ffz}I (2.3.15)

where the subscript (o) stands for orbiting reference fame and the subscript (I)

stands for inertial reference frame. The transformation matrix [T] is given by:

i.T i.3 i.R
Ty] = |3 - I j. 3 j-K (2.3.16)
k. T k.3 k- K

I8
1

~i

where I, J and are the unit vectors of the geocentric inertial reference frame

x1

and are the unit vectors of the orbiting reference frame given by:

el

while E,
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A

A

k= - |§o| (2.3.17)
(-]

=k x1i

where io is the radius vector of the origin of the orbiting reference frame and
Vo is the velocity vector. The orbiting reference frame orbits the Earth at
constant angular rate Q = V,/R,. Figure 11 shows the components of the J; grav-

ity force in orbiting reference frame for the same case shown in the previous

figure.

2.3.3 Thermal Model -

The thermal environment produces a periodical variation of the tether
length (contractions and expansions) with consequent variations of the accelera-

tion levels. The thermal inputs into the tether are:

A) Solar radiation
B) Earth albedo
C) Earth infrared radiation
D) Aerodynamic heating
E) Internal heating (i.e., Joule effect...)
The only cooling process 1s the radiation emitted by the wire. We have devel-

oped a new routine, neglecting the thermal inputs D and E, which calculates the

temperature gradient of the tether per unit length as follows:

P o= QA + QB + Q° — 27roeT4
P cm

(2.3.18)
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where:
r = tether radius
o = Boltzman constant
€ = tether emissivity
P = volume density of the tether
c = heat capacity of the tether
m = tether mass

For the expression of thermal inputs we have followed the line adopted by SKY-
HOOK ([4]). We included the earth albedo and we derived a more sophisticated
model for the partial and the total eclipse of the wire [5]. The expressions of

the Q! are as follows:

oA = 2 r o ISUN,INC
QB = a-IW.q.r f.cos(v) (2.3.19)
Q¢ = 27roomr f T;,
where:
[o% = tether absorbitivity
a = earth albedo (annual average)
A = tether area
f = view factor = é:EiE%;_élLﬁ and sinf = %?
¥ = sun zenith angle
R = infrared tether absorbitivity
Te = earth temperature

In the computation of Q® and Q¢ we neglected the solar declination angle, the

differences between continental and ocean areas and the dependence with the
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latitude and seasonal variations. We also assumed that the reflectance of the
earth is isotropic and diffuse and that the spectral distribution of reflected
radiation is equivalent to the spectral distribution of the incident radiation.
We compared the thermal beha‘vior of two different materials, under the same
environmental conditions: stainless steel and kevlar. Figure 12 is a sketch of
the geometry relevant to the thermal effects over the orbit. In Figure 13 and
14 the tether temperature is plotted vs. time (2 orbits) for a 2 mm diameter
stainless steel and kevlar tether respectively. The initial temperature is the

same for the two cases.

The thermal expansion (or contraction) of a tether segment of length £, is

given by:
AL = apf ATmex (2.3.20)

where ar 1s the tether thermal expansion coefficient. If we assume a tether
length of 10 km the expansion/contraction of the stainless steel wire and the

kevlar wire over one orbit at 450 km altitude are respectively as follows:

|Aenteel| ~ Tm

(2.3.21)

|A£k-vlar| ~ 2m

where we have assumed Qr steer = 1.2x10°5 °K°! and or keviar = -2x107% °K-! while the
maximum AT have been derived from the previous runs as follows: AT.t.,:.x ~ 58°K

and | ATkeviar | =~ 95°K.
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2.4 Concluding Remarks

A survey of various out-of-plane libration control laws has been carried
out. Consequently a yo-yo control law with amplitude of the tether length vari-
ation proportional to the amplitude of the out-of-plane libration has been se-
lected. This control law providesvgood damping when applied to a (theoretical)
two-dimensional system. In the actual 3-dimensional 4-mass tethered systen,
however, energy is transferred to the least damped degrees of freedom (the out-
of-plane lateral deflections are still undamped in the present simulations) in
such a way as to decrease the effectiveness of the algorithm for out-of-plane
libration control. The addition of damping algorithms for the out-of-plane lat-
eral deflections is therefore necessary (these damping algorithms will be devel-

oped in the next reporting period) .

A completely new package of major environmental disturbances relevant to
the altitude range of the Space Station has been also developed. This package

consists of: a new drag model based on Jacchia's 1977 model, a thermal model of
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the wire and a model of the J; gravity perturbation.

3.0 PROBLEMS ENCOUNTERED DURING REPORTING PERIOD

None

4.0 ACTIVITY PLANNED FOR THE NEXT REPORTING PERIOD

In the next reporting period the algorithms for damping the out-of-plane
lateral oscillations will be developed. The investigation of the forced dynam-

ics of the 4-mass tethered system during the station-keeping phase will also be

carried out.




